Mini type VFD of CV20 series

Thank you for using CV20 series Variable Frequency Drive made by Kinco Automation. CV20 satisfies the high performance requirements by using a unique control method to achieve high adapting to severe power network, temperature, humidity and dusty enviromment exceed those of similar product made by other companies, which improves the product's reliabiiity
noticably:Without PG connector, strong speed control, flexible input/output terminal, pulse Hotically:Without PG connector, strong speed control, flexible inputoutput terminal, pulse
feequency setting, saving parameers at power outage and stop, frequency setting channel, master and Save frequency control and so on, all these saisisy various of high accuracy and complex drive command, at the same time we provide the OEM customer high integration total solution, it values lighly in system cost saving and improving the system reliaibility.
CV20 can satisfy the customers' requirements on low noise and EMI by using optimized PWM cchnology and EMC design.
This manual provides inf
This manual provides information on installation, wiring, parameters seting, trouble-shooting, manual carefuluy before starting the drive and keep it in a proper place and to the right person. Unaackering Inspection Note
Upon unpacking, please check for:
Upon unpacking, please check for:
$-\quad$ Any damage occurred during transportation;

- Any damage occurred during ransportation; Our product is manufactured and packed at factory with great care. If here is any error, please contact us or distributors.
The user manual is subject to change without notifying the customers due to the continuous process of product improveme
VFD model rule

Production introduction:

General specifications		
Hem		Descripion
Input	Rated volage and frequency	4T:3-phase, $380 \mathrm{~V} \sim 440 \mathrm{~V} \mathrm{AC} ; 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ 2S:Single-phase, $200 \mathrm{~V} \sim 240 \mathrm{~V} ; 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ 1S:Single-phase, 100~120V; 50/60HZ
	Allowale volage range	4T: 320V-460V AC; $25: 180 \mathrm{~V} \sim 260 \mathrm{~V}$; $1 \mathrm{~S}: 90-132 \mathrm{~V}$ Volage tolerance $<3 \sigma_{\%}$: Freauency. $\pm 5 \%_{\%}$
Output	Rated volage	4T:0-440V; 2S:00-240V; 1s:0240V
	Frequency	$0 \mathrm{~Hz}-300 \mathrm{~Hz}$ (0-800 Hz customizable)
	Overload capacity	G type: 150% rated current for 1 minute, 180% rated current for 10 seconds;
Control Characteristics	Control mode	V/F control
	Modulation mode	Space vector PWM modulation
	Starting torque	$1 \mathrm{~Hz} 150 \%$ rated torque
	Frequency accuracy	Digital seting: Max frequency $x \pm 0.01 \%$; Analog seting: Max. frequency $\times 0.02 \%$
	Frequency resolution	Digital setting: 0.01 Hz ; Analog setting: Max frequency $\times 0.1 \%$
	Torque boost	Manual torque boost:0\%\%-30.0\%
	V/F patern	4 patterns: $1 \mathrm{~V} / \mathrm{F}$ curve mode set by user and 3 kinds of torque-derating modes (2.0 order, 1.7 order, and 1.2 order)
	Acc/Dec curve	Linear acceleration/deceleration, Four kinds of acceleration/deceleration time
	Auto current limit	Limit current during the operation automatically to prevent frequent overcurrent trip
$\begin{array}{\|l\|l} \hline \text { Operation } \\ \text { Function } \end{array}$	Operation Command	Operation Panel, Terminal, CommunicationControl, Supportswitching between these control channesl
	Frequency Seting	Digital, Analog Voltage/current setting.
	Auxiliary frequency	Support main and auxiliary seting(4",",-", "min", "max")
Operation panel	LED Display	Display setting frequency, output frequency, output voltage, output current and so on, about 20 parameters.
	$\begin{array}{\|l} \text { Keys lock and } \\ \text { function selection } \end{array}$	Lock part of keys or all the keys. Define the function of part of keys

Item		Descripion
Protection function		Open phase protection (optional), overcurrent protection, overvoltage protection, under-voltage protection, overhea protection, over-load protection and so on.
Environment	Operating site	Indoor, installed in the environment free from directsunlight, dust, corrosive gas, combustible gas, oil mist, steam and drip.
	Altiude	Derated above 1000 m , the rated output current shall be decreased by 10% for every rise of 1000 m
	Ambient temperature	$-10^{\circ} \mathrm{C}-40^{\circ} \mathrm{C}$, derated at $40^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$
	Humidity	5\%-995\%RH, non-condensing
	Vibration	Less than 5.9m/s2 (0.68)
	Storage temperature	$-40^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$
Strucure	Protection class	IP20
	Cooling method	Air cooling, with fan control.
Instalation method		Wall-mounted
Efficiency		290\%

Introduction of CV20 series:

Model of VFD	Rated capacity (kVA)	Rated inpul	Rated output	Motor powe
CV20-15-002 ${ }^{\text {G }}$	0.6	6.0	1.3	0.2
CV20-15-0004G	1.0	9.0	2.5	0.4
CV20-15-0007G	1.5	18.0	4.0	0.75
CV20-2S-0004G	1.0	5.3	2.5	0.4
CV20-25-0007G	1.5	8.2	4.0	0.75
CV20-25-0015G	3.0	14.0	7.5	1.5
CV20-47-0007G	1.5	3.4	2.3	0.75
CV20-4T-0015G	3.0	5.0	3.7	1.5
CV20-47-0022	4.0	5.8	5.5	2.2

CV20-2S-0004G~ cV20-2S-0015G/ CV20-1s-0002G~ CV20-1s-0007G

CV20-4T-0007G-CV20-4T-0022G

Button	Description
Δ	Increase the value or function
∇	Decrease the value of function
menu	Enter or Exit the programming status
$\begin{aligned} & \text { RUN } / 1 \\ & \text { STOP } \end{aligned}$	In panel operation mode, run the vfd by the first pressing; stop vfd by the second pressing. In VFD error status, reset the error by pressing
shift enter	Short pressing to shift data or function code. Hold pressing(more than 1s) to enter function code or save the changed value

Danger
-Wiring can only be done after the drive's AC power is disconnected, all the LEDs on the operation

Wiring ob can only be done after confirming the charge indicator on the right botom is off and the
oltage between main circuit power terminals s and - is below DC36V
Wire connections can only be done by rained and authorized person

- Wrec connections can only be done by trained and authorized person
-heck the wiring carefululy before connecting emergency stop or safety circuits.
-Check the drive's voltage level before supplying power to it, otherwise human injuries or equipment
damage may happen.

\dagger Attention

Check whether the Variable Speed Drive's rated input volage is in compliant with the AC supply volage before using.
Refer to chapter 2 on connected b baling resistor or roaking kii.
fis prohibited to connect the $A C$ supply cables to the drive's terminals U, V and W -Grounding cables should be copper cables with section area bigger than 3.5 mm 2 , and the grounding
resistance should be eess than 100 There it tent de tess han 10 .
on the usage conditions. To ensure safety, both the drive and the motor should be prounded, and on the usage conditions. TT ensure safely, both the drive and the motor should be grounded, and a
leakage current protector (RCD) should be installed. It is recommended to chose B type RCD and Set the leakage current tat 300 mA .
-The drive should be comnected to the AC supply via a circuit breaker or fuse to provide convenience

Top of single-phasel3-phase | | RLL1 | SLL2 | TLL3 | (\pm) |
| :--- | :--- | :--- | :--- | :--- |
| | | | | |
| | | | | |

Terminal name	Function description
RLL1, SLL2, TL3	Single-phase 220V(RLL1, SLL2 or 3 -phase 380VAC input terminal
UTI1, v/2, w/T3	3 -phase AC output terminal
$\stackrel{\text { ® }}{ }$	Shield terminal

Arrangement of control circuit terminals is as follows:

RA	RC	fiov	A1	X_{1}	X 2	X_{3}	X 4	com

lists the possible fault of CV20. The fault code varies from E001 to E027. Once a fault occurs, you may chec.
supplier.
Faults

Fault code	$\begin{gathered} \text { Fault } \\ \text { cateveries } \end{gathered}$	Possible reasons for faut	Actions
E001	$\begin{gathered} \text { Over-current } \\ \text { accelerination } \end{gathered}$	Acc time is too short	Prolong the Acc time
		Parameters of motor are wrong	Auto-tune the parameters of motor
		Coded disc breaks down, when PG is running	Check the coded disc and the connection
		Drive power is too mall	Selecta h higher power drive
		VFF curve is not suitable	Check and adjust V/F curve, adjust torque boost
E002	$\begin{aligned} & \text { Over-current } \\ & \text { deuring } \\ & \text { deceleration } \end{aligned}$	Deceleration time is too short	Prolong the Dec time
		The load generates energy or the load inertial is too big	Comect sutable braking kit
		Coded disc breaks down, when PG is running	Check the coded disc and the connection
		Drive power is too small	Selecta higher power drive
E003		Acceleration/Deceleration time is too short	Prolong Acceleration/ Deceleration time
		Sudden change of load or Abnormal load	Check the load
		Low AC supply volage	Check the AC supply volage
		Coded disc breaks down, when PG is running	Check the coded disc and the connection
		Drive power is too small	Selecta higher power drive
E004	Over voltage during acceleration	Abnormal AC supply volage	Check the power supply
		Too short acceleration time	Prolong acceleration time
E005	Over volageduringdecelenion	Too short Deceleration time (with reference to generated energy)	Prolong the deceleration time
		The load generates energy or the load inertial is too big	Comnect suitable braking kit
E006	Over voltage in constant-speed operating process process	Wrong ASR parameters, when drive run in the vector control mode	Refer to AS. ASR parameter seting
		$\begin{gathered} \hline \text { Acceleration /Deceleration } \\ \text { time is too short } \\ \hline \end{gathered}$	Prolong Acceleration/ Deceleration time
		Abnormal AC supply volage	Check the power supply
		Abnormal change of input volage	Install input reator
		Too big load inertia	Comnect suitable braking kit
E007	$\begin{gathered} \text { Drive's } \\ \text { controp power } \\ \text { supply ver } \\ \text { voltage } \end{gathered}$	Abnormal AC supply volage	Check the $A C$ supply yolage or seek service
E008	$\begin{aligned} & \text { Input phase } \\ & \text { loss } \end{aligned}$	Any of phase R, S and T cannot be detected	Check the wiring and installation Check the AC supply voltage
E009	$\begin{aligned} & \text { Output phase } \\ & \text { loss } \end{aligned}$	Any of Phase U, V and W cannot be detected	Check the drive's output wiring Check the cable and the motor
E010	Protections of IGBT act	Short-circuit among 3-phase output or line-to-ground short circuit	Rewiring, please make sure the insulation of motor is good
		Instantaneous over-current	Refere to E001-E003
		Vent is obstructed or fan does not work	Clean the vent or replace the fan
		Over-temperature	Lower the ambient temperature
		Wires or connectors of control board are loose	Check and rewiring
		Current waveform distorted due to output phase loss	Check the wiring
		Auxiliary power supply is damaged or IGBT driving voltage is too low	Seek service
		Shor-circuit of IGBT bridge	Seek service
		Control board is atnormal	Seek serrice
E011	IGBT module's heatsink overheat	Ambient over-temperature	Lower the ambient temperature
		Vent is obstructed	Clean the vent
		Fan does not work	Replace the fan
		IGBT module is abnormal	Seek service
E012	$\begin{gathered} \hline \text { Rectifier's } \\ \text { heatsink } \\ \text { overheat } \end{gathered}$	Ambient over-temperature	Lower the ambient temperature
		Vent is obstructed	Clean the vent
		Fan does not work	Replace the fan

